
Mini-Exam 2, Most Repeated Errors

September 15, 2021

General Advice

• Answer the question. If the question asks about principles, use the prin-
ciples. If the question asks for an attack and mitigation; provide both.
Wrong statements in other aspects may result in point reductions.

• Read the question carefully. If you are uncertain about details, spell this
out clearly in your answer. For example, if you are not sure what are the
assumptions about the threat model in the question, state in your answer
how you interpreted the question.

Question: Leaking information and Covert Channels

Error 1: Provide a mitigation that does not prevent the leakage. Many provided
a mitigation that instead of focusing on the leakage, focused on eliminating the
impact of the leakage. For instance if the TAs would leak the correct answer
(a, b, c, or d) in a multi-choice question, then shuffle the answers. While this
solves the cheating problem, does not solve the leaking problem which is what
was asked in the question.

Error 2: Providing a mitigation that renders the system useless. Many provided
a mitigation consisting on either forbidding TAs from reading the exam ques-
tions or forbidding TAs from answering questions on Moodle. While indeed this
would stop leakage, it also destroys the system. These tasks are part of the job
of the TAs, and they must be able to perform them. This would be equivalent
to saying that to avoid memory leaks in the computer, don’t switch it on.

Question: BIBA model

Error 1: Breaking the functionality of the system. Some answers assigned
cashiers and their daily earnings to the lowest level; and accountants/managers
and monthly balance to a higher level; but did not provide a means for informa-
tion from the cashiers to flow to the balance. While from a security perspective
the isolation would do the job; this is not a suitable solution. Any answer that

1



would explain that information needs to flow but needs to be sanitized was ac-
cepted.

Error 2: Forget some object. Some answers forgot to assign levels to the daily
earnings, and explain how they would be treated. As above, without this infor-
mation the system cannot operate.

Question: BLP model

Note: The easiest way to solve this question is to draw a lattice diagram with
the relationships you require in the system. This helps set the security levels for
each entity.

Error 1: Expressing security levels and dominance relationships without using
categories. Many answers used only the label (e.g., secret and public) and not
both label and category (e.g., engineering and marketing) to set security levels.
Some answers provided the categories but did not use them to determine secu-
rity levels. A security level requires both pieces of information.

Error 2: For allowing both read/write, security levels of the subject and object
should be the same. In BLP, if a subject needs to have both read and write
access to an object, it needs to be on the same security level as the object. For
example, engineers need to read and write source code. The same logic applies
to the campaign document, where nobody should modify it (write access). This
implies that it should be at the lowest security level (and other entities in the
system should dominate it). If other parties are set at the same level, they will
be able to modify it, unless the ds-property has been used.

Error 3: Confusing objects and categories. Some answers used the objects in
the system as categories for the subjects. For example, an engineer’s security
level is (secret, source code), and there is no security level for source code. This
does not provide information on what an engineer/other parties can do to the
source code. It works only if source code is given its own category and assigned
a security level.

Question: Diffie-Hellman exchange

Error 1: Assume Mallory can compute a discrete logarithm. The assumption
that discrete logarithm is hard is central to many cryptographic protocols, in-
cluding the Diffie-Hellman (DH) protocol. Unless a threat model explicitly in-
cludes computing the discrete logarithm, computing it should not be considered
possible in your analysis. In other words, an attack that proposes to compute
a discrete logarithm (in a group where this problem is hard) in general cannot
be considered feasible.

2



Recall that to derive a shared secret gxy, Bob computes (gx)y, using Alice’s
public key gx. Assuming that the discrete logarithm is hard, an eavesdropping
attacker cannot derive the shared secret when only observing gx and gy.

Question: Password updates

Error 1: Not justifying using the principles. Please remember to follow the
instructions in the questions. If the question asks to ”justify using the security
principles”, you must use the security principles to obtain the maximum grade.

Error 2: Unmatching principle and justification. Many responses seem to have
picked a (sometimes unrelated) security principle first and then tried to fit the
principle to an argument about a security property. This often resulted in a
mismatch between the argument and the cited security principle. Please make
sure that your justifications that use a security principle are coherent, and your
argument is directly connected to the cited principle, if any.

Error 3: Incorrect use of ‘privilege’. Many have used separation of privilege
(or, related mistake, least privilege) as the principle supporting the password
update policy: it separates the password cracking and the necessity to crack it
within 3 months. A privilege is an unrelated concept referring to rights given to
principals in a system. Technical terms such as ”privilege” in computer security
cannot be stretched out to mean arbitrary abilities.

Error 4: Lack of justification for Least Common Mechanism. Although least
common mechanism can indeed be applied to this example, it was almost al-
ways unjustified (”common mechanism increases complexity” is not a concrete
enough justification). An example of a better justification: an adversary can
leverage the knowledge of the regular password-update policy to target the pass-
word update mechanism at a certain time (at the end of a 3-month cycle) to
cause company-wide disruption.

Question: Unix Permissions

Error 1: Giving execute rights for txt and csv files The requirements of the
system didn’t specify the owner or employees should have execute rights over
the txt and csv files. When not specified, it’s better to follow the least privilege
principle. Giving execute rights on a txt file makes it possible to run the content
of the file as a script on the terminal, which in the context of the exercise is not
needed.

Error 2: Putting the sticky bit at an incorrect position. The sticky bit should
always be placed at the end of the line for a directory as follow : “drwxrwx–t
owner employees dir”. The ‘t’ should replace the ‘x’ for others.

3



Error 3: Misuse of the setuid bit. When using the setuid bit, the ‘s’ should
replace the execute right of the owner, not the group : “-rws–x— owner em-
ployees program”. Some students sometimes put the ‘s’ in the position of the
execute right of the group, which corresponds to the setgid bit. Some students
also put the ‘s’ on the execute right of the owner but for the csv inventory file
instead of the program.

Question: Adversarial Thinking

Error 1: Unique daily song per TA Assigning a unique song to each TA per
day is sufficient to prevent replay attacks while a specific TA is in the coffee
lounge. However, as the question states, TAs might come back frequently so
that as soon as a TA leaves the lounge the others can expect her to come back.
This would allow a replay attack by an eavesdropping student at a later point.
To avoid replay attacks, there would have to be a fresh bit of randomness
every time someone enters the room. The problem with solutions that explicitly
suggested to allow each song to be used only once per day is that this hampers
the utility of the system as we were searching for a mechanism that allows
TAs to come back frequently. This is another important aspect to keep in mind
when designing security mechanisms.

Question: Guess my number

Error 1: Only proving no-cheating to Bob. The question asks “allows Bob to
publicly show that Alice has cheated”. Just knowing that Alice has cheated is
not enough and Bob needs to show this in public (i.e., to 3rd parties). There-
fore, using MAC between Alice and Bob does not solve the problem as MAC
does not provide non-repudiation.

Error 2: Publishing hash/MAC(x) in the begging. Alice’s number x is limited
between 0 and 100. Even if the hash (or a MAC with a known key) is pre-image
resistant, Bob can compute the hash for all 99 possibilities and compare them
with the published hash, and learn x before guessing.

Question: Poem competition

Error 1: Listing properties instead of analyzing the problem. We asked for the
minimum properties required for this specific scenario. Listing all hash proper-
ties does not solve this problem.

Error 2: You need to know a poem p where h = Hash(p) to send h. If an ad-
versary wants to send the same hash h as a good poet’s submission and claims
the poet’s writing as his submission, then the adversary does not need to write
a poem p′ with the same hash as this p′ will never be revealed.

4



Error 3: Accidental collision. The probability of two random message m and
m′ having the same hash h = Hash(m) = Hash(m′) without any adversarial
tampering is negligible.

5


